
The Multi-commodity Flow Problem: Double
Dantzig-Wolfe decomposition

Zhang Fan
Huawei Technologies Ltd.,

Research Center, Hong-Kong
zhang.fan2@huawei.com

Wang Jiazheng
Huawei Technologies Ltd.,

Research Center, Hong-Kong
wang.Jiazheng@huawei.com

Mathieu Lacroix
Université Sorbonne Paris Nord,

LIPN, Villetaneuse, France
lacroix@lipn.univ-paris13.fr

Roberto Wolfler Calvo
Université Sorbonne Paris Nord,

LIPN, Villetaneuse, France
roberto.wolfler@lipn.univ-paris13.fr

Youcef Magnouche
Huawei Technologies Ltd.,

Paris Research Center, France
youcef.magnouche@huawei.com

Sebastien Martin
Huawei Technologies Ltd.,

Paris Research Center, France
sebastien.martin@huawei.com

Abstract—Traffic Engineering (TE) represents one of the most
essential tools in modern telecommunication networks. The rapid
growth of exchanged traffic has required tackling a known NP-
hard problem called the Multi-Commodity Flow problem (MCF).
Many studies in the literature have already considered different
variants of this problem. In this paper, we propose a new
way to use a double Dantzig-Wolfe decomposition formulation
to improve the quality of the linear relaxation. We apply our
method on the classical multi-commodity flow problem where the
throughput acceptance is first maximized and then the routing
cost is minimized. We provide a computational experiment and
conduct an in-depth analysis of the algorithm based on realistic
instances.

Index Terms—Multi-Commodity Flow Problem, Column Gen-
eration, Integer Programming, Network, Optimization, Dantzig-
Wolfe Decomposition, Linear Programming.

I. INTRODUCTION

The Multi-commodity flow problem is one of the most
famous problems related to telecommunications. It consists in
routing a set of commodities from their source to their target
in a capacitated network, each commodity being routed along
a single path. This problem has been intensively studied by the
Operation Research community and many exact and heuristic
methods have been devised [15]. Many of them are based
on a Mixed Integer Linear Programming (MILP) formulation
containing a huge number of variables that is known as the
arc-path formulation [1].

When the size of the instance is not “too big”, the arc-path
formulation can be solved in an exact way using a branch-and-
price algorithm [2], [14]. However, this method rapidly shows
its limitations when the size of the instance increases and the
formulation can only be heuristically solved. A way to do it
is to solve the linear relaxation of the arc-path formulation
to generate paths and to construct a solution by routing
commodities using only these generated paths. A drawback
of this method is that the linear relaxation cannot take into
account the requirement of routing every commodity along a
single path, resulting sometimes in a heuristic providing poor-
quality solutions.

To address this limitation, one may contemplate enhancing
formulations [3], [12], [13]; however, this comes with the
trade-off of a heightened computational time. Consequently,
a balance must be struck between accuracy and efficiency.
In this paper, we conduct an experimental comparison of
various strategies to navigate this trade-off. Dantzig-Wolfe
decomposition is used to tackle the Multi-commodity flow
problem where a column generation algorithm combined with
a rounding procedure allows finding a good heuristic solution
[7], [9], [10], [16].

In Section II, we give a formal description of the multi-
commodity flow problem. In Section III, we present a double
Dantzig-wolfe decomposition. In Section IV, we describe
several rounding algorithms to generate integer solutions from
the linear relaxation. In Section V we present computational
results to compare each method and we end with a conclusion.

II. MULTI-COMMODITY FLOW PROBLEM AND ORIGINAL
DOUBLE DECOMPOSITION MODEL

In this section, we formally present the multicommodity
flow problem. First, let us introduce some notation.

A. Notation

Given a graph G = (V,A) and a vertex subset W ⊆ V , the
leaving cut (resp. entering cut) associated with W is the set
of arcs having their tail in W and their head in V \W (resp.
their tail in V \W and their head in W) and it is denoted by
δout(W) (resp. δin(W)). When W = {v}, we write δout(v)
and δin(v) instead of δout({v}) and δin({v}), respectively.

A walk in a directed graph (V,A) is a sequence p =
(v0, a1, v1, . . . , ak, vk) where k ≥ 0, v0, v1, . . . , vk ∈ V ,
a1, . . . , ak ∈ A and ai = (vi−1, vi) for i = 1, . . . , k. The
walk is a path if v0, . . . , vk are distinct. In the following, a
path will also refer to its set of arcs. Vertex v0 is the starting
vertex of p and vk its ending vertex. For s, t ∈ V , a path is
an st-path if its starting vertex is s and its ending vertex is t.

B. Problem Definition

Let G = (V,A) be a directed graph. With each arc a ∈ A
we associate a capacity ca ∈ Z∗

+ (in Mbps per second) and
a routing cost ra ∈ Z∗

+. Let K be a set of commodities. For
k ∈ K, let sk ∈ V and tk ∈ V denote the source and target
nodes of the commodity and bk its bandwidth.

A solution to the Multicommodity Flows Problem (MFP)
consists of a |K|-tuple of sktk-paths, one for every commodity
k ∈ K, such that the total bandwidth of the commodities
being routed on each arc does not exceed the arc capacity. The
solution cost is the sum of the cost of each path. This latter cost
is equal to the bandwidth of the commodity routed along the
path times the sum of the routing costs of the arcs in that path.
The MFP consists in maximizing the throughput acceptance
on the network as the first objective that minimizes the cost
in the second objective. These two objectives are considered
in a lexicographic order.

C. Arc-Path Formulation

We associate with each commodity k ∈ K and path p ∈
P k a binary variable xk

p indicating whether commodity k is
routed along path p (xk

p = 1) or not (xk
p = 0). Let P k

a be
the set of paths in P k which contain arc a ∈ A for each
commodity k ∈ K. A binary variable yk is associated with
each commodity k ∈ K and indicates whether commodity k
is routed (yk = 0) or not (yk = 1). Let M ∈ R+ be a constant
being at least equal to the longest path in G with respect to arc
cost vector r. The MFP can be formulated with the following
arc-path formulation:

min
∑
k∈K

bk

Myk +
∑
p∈Pk

∑
a∈p

rax
k
p

 (1)

∑
k∈K

bk
∑
p∈Pk

a

xk
p ≤ ca ∀a ∈ A, (2)

∑
p∈Pk

xk
p + yk ≥ 1 ∀k ∈ K, (3)

xk
p, yk ∈ {0, 1} ∀k ∈ K, p ∈ P k. (4)

Inequalities (2) are the arc capacity constraints ensuring that
the total commodity bandwidth on each arc does not exceed
its capacity. Inequalities (3) assert that for each commodity
k ∈ K, a penalty Mbk is paid if it is not routed by forcing
yk to be equal to one in this case.

III. DOUBLE DANTZIG-WOLFE DECOMPOSITION

To strengthen the linear relaxation, we investigate a Dantzig-
Wolfe decomposition. We first present the formulation intro-
duced in [13] and present how we extend this formulation to
speed-up its linear relaxation.

A. Original Double Dantzig-Wolfe decomposition

Park et al. [13] formulated the max acceptance version
of MFP with a binary linear problem that is obtained by
applying a Lagrangian decomposition on the classical compact

formulation. For each arc a = (i, j) ∈ A, let Ka = {k ∈ K :
sk ̸= j, tk ̸= i}. A subset of commodities L ⊆ Ka such that
the total bandwidth

∑
k∈L bk is not more than the arc capacity

ca is called a pattern associated with arc a. For all a ∈ A, let
Ba denote the set of patterns of arc a and Bk

a denote the set
of patterns of Ba containing commodity k ∈ K.

Since a commodity must be routed along a single path, the
set of commodities routed along an arc a ∈ A corresponds to
a pattern of Ba. We consider the same variables x and y as in
the arc-path Formulation (1)-(4) and introduce the following
new variables. For each arc a ∈ A and each pattern b ∈ Ba,
let zb equal one if the commodities routed through arc a are
included in b, and zero otherwise. The max acceptance version
of MFP can be formulated as:

min
∑
k∈K

bk

Myk +
∑
p∈Pk

∑
a∈p

rax
k
p

 (5)

yk +
∑
p∈Pk

xk
p ≥ 1 ∀k ∈ K, (6)

−
∑
b∈Ba

zb ≥ −1 ∀a ∈ A, (7)∑
b∈Bk

a

zb −
∑
p∈Pk

a

xk
p ≥ 0 ∀a ∈ A,∀k ∈ K, (8)

xk
p ∈ {0, 1} ∀k ∈ K, p ∈ P k, (9)

yk ∈ {0, 1} ∀k ∈ K, (10)
zb ∈ {0, 1} ∀a ∈ A, b ∈ Ba. (11)

The objective function (5) and inequalities (6) are the same
as (1) and (3) respectively. Inequalities (7) ensure that at most
one pattern is selected per arc. Capacity requirement is ensured
with linking constraints (8) that force an arc pattern to contain
a commodity to route this commodity along this arc. (9)-(11)
are the binary constraints.

Note that the number of variables is an exponential number
for the two families of variables, the path variables xk

p and
the pattern variables zb. Then to solve the linear relaxation
of Formulation (5)-(11) we need to run a column generation
algorithm. The pricing problem is of two types: a shortest
path problem for each commodity k ∈ K to find a minimum
negative reduced cost path of P k, and a maximum knapsack
problem for each arc a ∈ A to find the minimum reduced cost
pattern of Ba. These pricing problems will be presented in
details in the next section.

B. Partial Double Dantzig-Wolfe decomposition

We present a formulation where the capacity requirement
is ensured by capacity constraints (2) for some arcs and
by patterns and linking constraints for the other arcs. Let
Ã ⊆ A be the set of arcs for which the classical capacity
constraint (2) is replaced with pattern constraints (7) and
linking constraints (8).

min
∑
k∈K

bk

Myk +
∑
p∈Pk

∑
a∈p

rax
k
p

 (12)

yk +
∑
p∈Pk

xk
p ≥ 1 ∀k ∈ K, (13)

−
∑
k∈K

bk
∑
p∈Pk

a

xk
p ≥ −ca ∀a ∈ A \ Ã, (14)

−
∑
b∈Ba

zb ≥ −1 ∀a ∈ Ã, (15)∑
b∈Bk

a

zb −
∑
p∈Pk

a

xk
p ≥ 0 ∀a ∈ Ã,∀k ∈ K, (16)

xk
p ∈ {0, 1} ∀k ∈ K, p ∈ P k, (17)

yk ∈ {0, 1} ∀k ∈ K, (18)

zb ∈ {0, 1} ∀a ∈ Ã, b ∈ Ba. (19)

Formulation (12)-(19) is a mixed of the arc-path formula-
tions and (5)-(11). Indeed, if Ã = ∅, then Formulation (12)-
(19) is equivalent to the arc-path formulation, and if Ã = A, it
is equivalent to (5)-(11). Thus, for ∅ ⊊ Ã ⊊ A, the formulation
is a compromise between the quality of the bound of the linear
relaxation and the time needed to solve it.

1) Pricing problem: The linear relaxation of (12)-(19)
contains an exponential number of variables so it requires a
column generation algorithm to be solved. The linear relax-
ation consists in replacing (17)-(19) by

xk
p ≥ 0 ∀k ∈ K, p ∈ P k, (20)

yk ≥ 0 ∀k ∈ K, (21)

zb ≥ 0 ∀a ∈ Ã, b ∈ Ba. (22)

Denote by λk, µa, νa,k the nonnegative dual variables
corresponding to constraint (13) associated with k ∈ K, to
constraint (14) or (15) associated with arc a ∈ A1, and to
constraints (16) associated with arc a ∈ Ã and commodity
k ∈ K, respectively.

There are two types of pricing problems:
• The first pricing problem is the one associated with each

commodity k ∈ K. It consists in determining whether
there exists a path p ∈ P k having a negative reduced
cost. This reduces to compute an sktk-shortest path in G
with respect to arc cost vector w defined as:

wa =

{
ra +

∑
k∈K νa,k if a ∈ Ã,

ra + µa otherwise,
for each arc a ∈ A.

If the shortest path has a cost less than λk, it is a negative
reduced cost column. Otherwise, there is no such column
in P k. Since w ≥ 0, this pricing problem can be solved
in polynomial time using Dijkstra algorithm [5].

• The second pricing problem is the one associated with
each arc a ∈ Ã. It consists in determining whether there

1Since there is exactly one constraint amoung (14) or (15) for each arc
a ∈ A, there is a unique dual variable µ ∈ RA associated with these two
families of constraints.

exists a pattern having a negative reduced cost. It reduces
to computing a binary knapsack problem [8] obtained by
considering an item for each commodity k ∈ K with
profit νa,k and weight bk, the knapsack having a capacity
of ca. If the profit of the computed knapsack is greater
than µa, the variable zb with b ∈ Ba has a negative re-
duced cost and is added to the restricted master problem.
Otherwise, there does not exist a negative reduced cost
column in Ba.

2) Pricing and cutting plane algorithm to solve the linear
relaxation: We implement a pricing and cutting plane algo-
rithm to solve the linear relaxation of Formulation (12)-(19)
in a similar way as done in [13]. The pricing step is used to
generate paths and patterns and the cutting plane comes from
the fact that we consider linking constraints (16) in a lazy way.

We suppose that the set of arcs Ã is fixed. In the exper-
iments, we try different strategies to fix Ã and compare the
results we obtain for these different strategies in terms of gap
and computation time.

The initial restricted master problem has variable yk and
the variable xk

p associated with the shortest path p of P k, for
each commodity k ∈ K. Only the inequalities (16) associated
with arcs used by shortest paths are initially considered for all
commodities. No variable z is included.

At each iteration, after solving the restricted master prob-
lem, the first pricing problem is solved. If no negative reduced
cost commodity path is found, the second pricing problem is
solved. If patterns with negative reduced costs are found, they
are added to the current restricted master problem. Otherwise,
separation of violated inequalities (16) is performed by enu-
meration. If a violated inequality is found, then all inequalities
associated with the same arc and all the commodities are
added to the current restricted master problem. Otherwise, the
solution of the restricted master problem is optimal for the
linear relaxation of (12)-(19).

3) Strategies for the choice of Ã: We consider four different
values for the choice of Ã. The first two are the extremal cases,
that is when Ã = ∅ and Ã = A. They will correspond to
strategies EMPTY and FULL respectively. As a trade-off be-
tween bound quality and computational time, we also propose
to compute Ã as a preprocessing step. To this aim, we solve
the linear relaxation of Formulation (1)-(4) that corresponds
to the case Ã = ∅. Denoting by x∗, y∗ the obtained optimal
linear solution, we denote by w the remaining arc capacity
vector associated with this fractional solution, that is, wa =
ca −

∑
k∈K bk

∑
p∈Pk

a
x∗
p for each arc a ∈ A. The saturated

strategy (SAT), consists in considering Ã as the set of arcs
having no remaining capacity, that is, Ã = {a ∈ A : wa = 0}.
The CUT strategy computes Ã as follows. Let Kfrac be the set
of commodities having a path with a fractional value in x∗, y∗,
that is, Kfrac = {k ∈ K : ∃p ∈ P k with 0 < x∗

p < 1}. Order
Kfrac following the decreasing commodity bandwidths. For
each k ∈ Kfrac, compute a minimum weighted sktk-cut with
weights w in Gk, which is the graph obtained by removing the
arcs of the previous computed cuts (following the commodity

order). Denoting by Ãk the arcs of the computed sktk-cut, we
define Ã as the union of Ak, that is Ã = ∪k∈Kfrac

Ãk.

IV. ROUNDING PROCEDURE

In this section, we present a comparison between different
rounding procedures. Each rounding procedure tries to find the
best solution using for each commodity k ∈ K only the paths
Ck ⊆ P k that have been generated during column generation.

The first considered rounding procedure is called random-
ized rounding where paths are selected with a probability
depending on the optimal solution of the linear relaxation. The
second rounding procedure is based on the feasibility PUMP
rounding [6] that consists in finding a solution close as possible
to the best infeasible rounded solution.

Randomized rounding

The aim of the randomized rounding procedure is to ran-
domly select paths where the probability is proportional to the
linear relaxation. Thus, at the end of the column generation
loops if a variable associated with a path has a high value then
the path is a good candidate for the heuristic solution.

Each iteration of the randomized rounding procedure is de-
scribed in the Algorithm 1. It can be summarized as shuffling
the commodities, from this ordering, randomly selecting a
path for each commodity k ∈ K where the probability is
proportional to the linear relaxation value, that is, each path
p ∈ Ck has a probability

xk
p

1−yk
to be selected. Algorithm 1 is

run several times until the time limit is reached. To this end,
we return the best solution.

Algorithm 1: Randomized rounding algorithm
Data:

{Ck} collection of columns (or paths) for each
commodity k ∈ K with their associated linear
relaxation.

Result: Integer solution P ∗

K ′ ← σ(K) ; /* shuffle the ordering of the

commodities */

c′a ← ca ∀a ∈ A;
for k ∈ K ′ do

while Ck ̸= ∅ do
p← γ(Ck) ; /* randomly select a path

according to the linear relaxation */

if min
a∈p

c′(a) ≥ bk then
P ∗ ← P ∗ ∪ {p};
for a ∈ p do

c′a ← c′a − bk
end
break;

else
remove p from Ck;

end
end

end

Improved feasibility PUMP rounding
For the second approach, we derive a set of algorithms

called PUMP from the feasibility pump rounding algorithm
presented in [6]. We consider the same structure of the
algorithm but we introduce a Randomized Rounding phase
at each iteration with a time limit. Indeed preliminary results
show that the original version of the feasibility PUMP method
is outperformed by the randomized rounding method.

Algorithm 2 describes the Improved feasibility PUMP
rounding algorithm steps, where [x] is the vector obtained
from x by rounding each component to its closest integer.
Let CGA be the model associated with (12)-(16) and (20)-
(22). We denote by ∆(CGA, x̃) the CGA model where the
objective function is replaced by

min
∑
k∈K

(
(1− x̃(yk))yk + x̃(yk)(1− yk)

)
(23)

+
∑
k∈K

∑
p∈Pk

(
(1− x̃(xk

p))x
k
p + x̃(xk

p)(1− xk
p)
)

where x̃(xk
p) (resp. x̃(yk)) is the value of the variable xk

p

(resp. yk) in the vector x̃. The goal of this objective function
is to find a solution close to the ideal infeasible rounding and
respecting the constraints.

Algorithm 2: Improved feasibility PUMP rounding
algorithm

Data:
{Ck} collection of columns (or paths) for each
commodity k with their associated linear relaxation

Result: Integer solution P ∗

t← 0 and x∗ ← argmin{CGA};
if x∗ is integer then

return the associated paths
end
x̃← [x∗] ; /* rounding of x∗

*/

while time < TimeLimit do
x∗ ← argmin{∆(CGA, x̃)};
if x∗ is integer then

return the associated paths;
else

run randomized rounding on x∗ with a time
limit of 2 seconds;
if x̃ ̸= [x∗] then

x̃← [x∗];
else

change the rand(T/2, 3T/2) entries of x̃
with highest |x∗ − x̃| values;

end
end

end

V. EXPERIMENTAL RESULTS

Instance description
We consider three sets of instances. The first set called PRC

corresponds to IP-RAN networks [7]. There are three sizes of

nodes # links # commodities
Small PRC 71 1025.2 60
Middle PRC 1271 4996.8 300
Large PRC 5021 16160.4 600
N600 600 2400.0 1000
N800 800 3200.0 2000

TABLE I
DESCRIPTION OF INSTANCES PRC AND NX.

Topology # nodes # links # commodities
cost266 37 57 1332
di-yuan 11 42 22
france 25 45 300
geant 22 36 462
nobel-eu 28 41 378
nobel-germany 17 26 121
nobel-us 14 21 91
pdh 11 34 24
polska 12 18 66
sun 27 102 67
ta1 24 55 396
ta2 65 108 1869

TABLE II
SNDLIB INSTANCES DESCRIPTION.

instances: small, medium, and large, and 5 instances for each
size.

The second set of instances called NX corresponds to
telecommunication networks more connected than the classical
IP-RAN networks. We consider two instances of different
sizes: N600 and N800. For each instance, we consider the
original instance and three additional ones in which the link
capacities are divided by 2, 3, and 5 respectively.

The third set of instances is SNDLib composed of 12
instances from [11]. Since routing costs are all unitary costs in
these instances, we change them in the same way as described
in [4].

The average number of nodes, arcs, and commodities for
each instance are reported in Table I for PRC and NX, and in
Table II for SNDLib.

Settings

We compute for each instance the linear relaxation of
Formulation (12)-(19) with the strategies EMPTY, FULL, SAT
and CUT for the choice of Ã. Each time, we fix a time limit
of 240 seconds for computing for the column generation.

We can remark that, due to the time limit, the FULL strategy
is not able to improve the Dual Bound for NX instances.
Furthermore, CUT strategy allows us to improve the Dual
Bound of 45% of instances which is the best improvement.

In Figure 1, we see the computational time for each strategy.
Clearly, strategy FULL reaches the time limit of 240 seconds

Strategy PRC NX SNDlib
FULL 4/15 0/8 7/12
SAT 5/15 2/8 8/12
CUT 5/15 2/8 9/12

TABLE III
NUMBER OF INSTANCES WHERE THE DUAL BOUND (LINEAR RELAXATION)

IS IMPROVED W.R.T. THE BASELINE (EMPTY STRATEGY).

Strategy PRC NX SNDlib
FULL-RR 0/15 0/8 1/12
SAT-RR 6/15 1/8 1/12
CUT-RR 0/15 0/8 0/12
EMPTY-PUMP 1/15 3/8 2/12
FULL-PUMP 0/15 0/8 1/12
SAT-PUMP 7/15 3/8 1/12
CUT-PUMP 1/15 3/8 1/12

TABLE IV
NUMBER OF INSTANCES WHERE THE PRIMAL BOUND IS IMPROVED W.R.T.

THE BASELINE (EMPTY STRATEGY).

in a lot of instances. Methods SAT and CUT are a good
tradeoff to provide a better dual bound. Furthermore, CUT
approach provides a better computational time and a better
improvement of the linear relaxation.

Fig. 1. Computational time for the linear relaxation

Now, we analyze the strength of the combination of partial
double column generation with the two proposed rounding
methods. For each rounding method, we consider a time
limit of 100 seconds, and for the improved feasibility PUMP
rounding, we set to 2 seconds the time limit of the internal
randomized rounding. We compare the following combination
of algorithms.

• EMPTY-RR: the baseline
• FULL-RR: Randomized Rounding after FULL column

generation procedure.
• SAT-RR: Randomized rounding after SAT column gen-

eration procedure.
• CUT-RR: Randomized rounding after CUT column gen-

eration procedure.
• EMPTY-PUMP: our PUMP algorithm after EMPTY col-

umn generation procedure.
• FULL-PUMP: our PUMP algorithm after FULL column

generation procedure.
• SAT-PUMP: our PUMP algorithm after SAT column

generation procedure.
• CUT-PUMP: our PUMP algorithm after CUT column

generation procedure.
Table IV provides the number of instances where the quality

of the heuristic solution is better than the baseline EMPTY-

Strategy PRC NX SNDlib
EMPTY-RR 0/15 0/8 0/12
FULL-RR 3/15 0/8 5/12
SAT-RR 9/15 0/8 2/12
CUT-RR 5/15 0/8 3/12
EMPTY-PUMP 0/15 0/8 0/12
FULL-PUMP 3/15 0/8 5/12
SAT-PUMP 10/15 0/8 1/12
CUT-PUMP 6/15 0/8 3/12

TABLE V
NUMBER OF INSTANCES WHERE THE GAP IS 0%.

Strategy PRC NX SNDlib
FULL-RR 4/15 0/8 6/12
SAT-RR 11/15 1/8 7/12
CUT-RR 5/15 2/8 9/12
EMPTY-PUMP 1/15 3/8 2/12
FULL-PUMP 4/15 0/8 6/12
SAT-PUMP 12/15 3/8 5/12
CUT-PUMP 6/15 3/8 9/12

TABLE VI
NUMBER OF INSTANCES WHERE THE GAP IS IMPROVED W.R.T. THE

BASELINE (EMPTY STRATEGY).

RR. The PUMP version of the algorithm allows for improving
the quality of the heuristic for the PRC and NX instances. The
SAT strategy of the partial double decomposition is the best
one to improve the quality of the heuristic solution.

The gap presented in Table V and Table VI is computed as
follows, |Heuristic solution - Linear relaxation

Heuristic solution |.
Table V shows the number of instances where the gap is

closed, i.e., equal to 0. The algorithm closing the gap for a
maximum of the tested instances is SAT-PUMP which closes
the gap on more than 30%. We remark that the conclusion on
the algorithm performance are the same as for Table IV.

Table VI presents the number of instances where the gap
is improved in comparison with the Baseline. CUT strategy is
better for improving the dual bound and SAT strategy is better
for improving the heuristic solution. This table shows that to
reduce the gap the SAT strategy with PUMP rounding method
is the better one.

VI. CONCLUSION

In this paper, we have investigated the Multi-Commodity
flow problem. We first have presented an arc-path formulation
for the problem where the decision variable consists in se-
lecting a path for each commodity. Then, we have applied
the double Dantzig-wolfe decomposition, as in an existing
paper from the literature, to strengthen the linear relaxation by
introducing new arc pattern variables that are also exponential
in number. In this paper, we introduced a slightly different
formulation by considering patterns only on a subset of
links. Different types of subsets are analyzed. Moreover, we
compare different rounding methods that allowed us to obtain
integer solutions from the linear relaxation. By combining the
approaches, we obtained good performances where we closed
the gap for 31% of instances and improved the gap for 57%
of instances.

REFERENCES

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows: theory, algorithms and applications. Network, 1:864, 1993. ISBN:
013617549X.

[2] Cynthia Barnhart, Christopher A. Hane, and Pamela H. Vance. Integer
multicommodity flow problems. In William H. Cunningham, S. Thomas
McCormick, and Maurice Queyranne, editors, Integer Programming and
Combinatorial Optimization, pages 58–71, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[3] Cynthia Barnhart, Christopher A. Hane, and Pamela H. Vance. Using
Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multi-
commodity Flow Problems. Operations Research, 48(2):318–326, 2000.

[4] Amal Benhamiche, Morgan Chopin, and Sébastien Martin. Unsplittable
shortest path routing: Extended model and matheuristic. In 2023
9th International Conference on Control, Decision and Information
Technologies (CoDIT), pages 926–931. IEEE, 2023.

[5] Edsger W Dijkstra. A note on two problems in connexion with graphs.
In Edsger Wybe Dijkstra: His Life, Work, and Legacy, pages 287–290.
2022.

[6] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump.
Mathematical Programming, 104:91–104, 2005.

[7] Nicolas Huin, Jérémie Leguay, Sébastien Martin, and Paolo Medagliani.
Routing and slot allocation in 5g hard slicing. Computer Communica-
tions, 2023.

[8] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., 1990.

[9] Miguel Pineda Martı́n and Sébastien Martin. Unsplittable multi-
commodity flow problem via quantum computing. In 2023 9th Interna-
tional Conference on Control, Decision and Information Technologies
(CoDIT), pages 385–390. IEEE, 2023.

[10] M Yassine Naghmouchi, Shoushou Ren, Paolo Medagliani, Sébastien
Martin, and Jérémie Leguay. Optimal admission control in damper-based
networks: Branch-and-price algorithm. In 2023 9th International Con-
ference on Control, Decision and Information Technologies (CoDIT),
pages 488–493. IEEE, 2023.

[11] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. Sndlib
1.0—survivable network design library. Networks, 55(3):276–286, 2010.

[12] Kyungchul Park, Seokhoon Kang, and Sungsoo Park. An Integer Pro-
gramming Approach to the Bandwidth Packing Problem. Management
Science, 42(9):1277–1291, 1996.

[13] Sungsoo Park, Deokseong Kim, and Kyungsik Lee. An integer pro-
gramming approach to the path selection problems. In Proceedings of
the International Network Optimization Conference INOC, Evry-Paris,
France, pages 448–453, 2003.

[14] Mark Parker and Jennifer Ryan. A column generation algorithm
for bandwidth packing. Telecommunication Systems, 2(1):185–195,
December 1993.

[15] Khodakaram Salimifard and Sara Bigharaz. The multicommodity
network flow problem: state of the art classification, applications, and
solution methods. Operational Research, 22(1):1–47, 2022.

[16] Jiachen Zhang, Youcef Magnouche, Pierre Bauguion, Sebastien Martin,
and J. Christopher Beck. Computing bipath multicommodity flows with
constraint programming–based branch-and-price-and-cut. INFORMS
Journal on Computing, 2024.

